Contents:
Notes on the Troubleshooting and Repair of Audio Equipment and Other Miscellaneous Stuff
Copyright (c) 1994, 1995, 1996, 1997, 1998
All Rights Reserved
Reproduction of this document in whole or in part is permitted if both of the following conditions are satisfied:
If you have ever tried to get a piece of consumer electronic equipment repaired, you understand why so much dead stuff is likely to be gathering dust in your attic or basement closet or junk box. It does not pay! This may be partially by design. However, to be fair, it may take just as much time to diagnose and repair a problem with a $20 Walkman as a $300 VCR and time is money for a repair shop. It is often not even economical to repair the more expensive equipment let alone a $40 answering machine. The cost of the estimate alone would probably buy at least one new unit and possibly many more. However, if you can do the repair yourself, the equation changes dramatically as your parts costs will be 1/2 to 1/4 of what a professional will charge and of course your time is free. The educational aspects may also be appealing. You will learn a lot in the process. Many problems can be solved quickly and inexpensively. Fixing an old boombox to take take to the beach may just make sense after all. This document provides maintenance and repair information for a variety of consumer electronic devices not covered by other documents in the "Notes on the Troubleshooting and Repair of..." series. Suggestions for additions (and, of course, correction) are always welcome. You will be able to diagnose problems and in most cases, correct them as well. As most difficulties encountered with this type of equipment are mechanical, there is significant emphasis on dirt, lubrication, deteriorated rubber parts, broken doohickies, and so forth. With minor exceptions, specific manufacturers and models will not be covered as there are so many variations that such a treatment would require a huge and very detailed text. Rather, the most common problems will be addressed and enough basic principles of operation will be provided to enable you to narrow the problem down and likely determine a course of action for repair - or decide that replacement is indeed the better option. However, in many cases, you will be able to do what is required to repair a piece of equipment for a fraction of what would be charged by a repair center. Perhaps, you will even be able to revive something that would otherwise have gone into the dumpster - or remained in that closet until you moved out of your house (or longer)! Should you still not be able to find a solution, you will have learned a great deal and be able to ask appropriate questions and supply relevant information if you decide to post to sci.electronics.repair. It will also be easier to do further research using a repair book or guide. In any case, you will have the satisfaction of knowing you did as much as you could before finally giving up or (if it is worthwhile cost-wise) taking it in for professional repair. With your new-found knowledge, you will have the upper hand and will not easily be snowed by a dishonest or incompetent technician. If you are just getting started, you should refer to "Repair Briefs, an Introduction" for additional troubleshooting tips, recommended test equipment, suggested parts inventory, and other general information.
Your local public library (621.384 if your library is numbered that way) or technical bookstore represents a valuable resource for books on both the technology and repair of a large variety of consumer electronics devices. For general troubleshooting techniques, see the section: "Some general references".
These sites deal with non-power wiring information: phones, audio, video, home automation, etc. Since much of the content of this document relates to home electronics that may involve such wiring, these sites may be of interest. The first also has a pile of links to other related sites. * http://www.mcdata.com/~meh0045/homewire/wire_guide.html * http://www.geocities.com/SiliconValley/Pines/4116/ * http://www.geocities.com/ResearchTriangle/3300/ * http://us016757.home.mindspring.com (Engineering Notebook section)
The only danger to you in most of these devices is the AC line connection (if any) and getting sucked into any mechanical people traps. Before you plug in the unit with any covers removed, make note and cover up any exposed AC line connections. The rest of the circuitry is low voltage and while you can destroy your equipment by your actions, you should be fairly safe. Exceptions to this are noted where appropriate. However, you never can tell where an exciting troubleshooting expedition will lead. The following Safety Guidelines are included for your survival when working on line connected or high voltage equipment (and your reading enjoyment).
These guidelines are to protect you from potentially deadly electrical shock hazards as well as the equipment from accidental damage. Note that the danger to you is not only in your body providing a conducting path, particularly through your heart. Any involuntary muscle contractions caused by a shock, while perhaps harmless in themselves, may cause collateral damage - there are many sharp edges inside this type of equipment as well as other electrically live parts you may contact accidentally. The purpose of this set of guidelines is not to frighten you but rather to make you aware of the appropriate precautions. Repair of TVs, monitors, microwave ovens, and other consumer and industrial equipment can be both rewarding and economical. Just be sure that it is also safe! * Don't work alone - in the event of an emergency another person's presence may be essential. * Always keep one hand in your pocket when anywhere around a powered line-connected or high voltage system. * Wear rubber bottom shoes or sneakers. * Wear eye protection - large plastic lensed eyeglasses or safety goggles. * Don't wear any jewelry or other articles that could accidentally contact circuitry and conduct current, or get caught in moving parts. * Set up your work area away from possible grounds that you may accidentally contact. * Know your equipment: TVs and monitors may use parts of the metal chassis as ground return yet the chassis may be electrically live with respect to the earth ground of the AC line. Microwave ovens use the chassis as ground return for the high voltage. In addition, do not assume that the chassis is a suitable ground for your test equipment! * If circuit boards need to be removed from their mountings, put insulating material between the boards and anything they may short to. Hold them in place with string or electrical tape. Prop them up with insulation sticks - plastic or wood. * If you need to probe, solder, or otherwise touch circuits with power off, discharge (across) large power supply filter capacitors with a 2 W or greater resistor of 100-500 ohms/V approximate value (e.g., for a 200 V capacitor, use a 20K-100K ohm resistor). Monitor while discharging and/or verify that there is no residual charge with a suitable voltmeter. * For TVs and monitors in particular, there is the additional danger of CRT implosion - take care not to bang the CRT envelope with your tools. An implosion will scatter shards of glass at high velocity in every direction. There is several tons of force attempting to crush the typical CRT. Always wear eye protection. * Connect/disconnect any test leads with the equipment unpowered and unplugged. Use clip leads or solder temporary wires to reach cramped locations or difficult to access locations. * If you must probe live, put electrical tape over all but the last 1/16" of the test probes to avoid the possibility of an accidental short which could cause damage to various components. Clip the reference end of the meter or scope to the appropriate ground return so that you need to only probe with one hand. * Perform as many tests as possible with power off and the equipment unplugged. For example, the semiconductors in the power supply section of a TV or monitor can be tested for short circuits with an ohmmeter. * Use an isolation transformer if there is any chance of contacting line connected circuits. A Variac(tm) is not an isolation transformer! The use of GFCI (Ground Fault Circuit Interrupter) protected outlet is a good idea but will not protect you from shock from many points in a line connected TV or monitor, or the high voltage side of a microwave oven, for example. A circuit breaker is too slow and insensitive to provide any protection for you or in many cases, your equipment. The GFCI may protect your scope probe from smoking if you accidentally connect its ground to a live chassis. * Don't attempt repair work when you are tired. Not only will you be more careless, but your primary diagnostic tool - deductive reasoning - will not be operating at full capacity. * Finally, never assume anything without checking it out for yourself! Don't take shortcuts!
Many problems have simple solutions. Don't immediately assume that your problem is some combination of esoteric complex convoluted failures. For a tape deck, it may just be a bad belt or a bad tape. Try to remember that the problems with the most catastrophic impact on operation (a dead AC adapter) have the simplest solutions (repair the wires broken due to flexing in the power cable). If you get stuck, sleep on it. Sometimes, just letting the problem bounce around in your head will lead to a different more successful approach or solution. Don't work when you are really tired - it is both dangerous and mostly non-productive (or possibly destructive). Whenever working on precision equipment, make copious notes and diagrams. You will be eternally grateful when the time comes to reassemble the unit. Most connectors are keyed against incorrect insertion or interchange of cables, but not always. Apparently identical screws may be of differing lengths or have slightly different thread types. Little parts may fit in more than one place or orientation. Etc. Etc. Pill bottles, film canisters, and plastic ice cube trays come in handy for sorting and storing screws and other small parts after disassembly. Select a work area which is well lighted and where dropped parts can be located - not on a deep pile shag rug. Something like a large plastic tray with a slight lip may come in handy as it prevents small parts from rolling off of the work table. The best location will also be relatively dust free and allow you to suspend your troubleshooting to eat or sleep or think without having to pile everything into a cardboard box for storage. Another consideration is ESD - Electro-Static Discharge. The electronic components in a some devices like cassette decks, Walkmen, and portable phones, are vulnerable to ESD. There is no need to go overboard but taking reasonable precautions like not wearing clothing made of wool that tends to generate static. When working on larger devices like cassette decks, get into the habit of touching a ground like the metal chassis before touching any circuit components. A basic set of precision hand tools will be all you need to disassemble and perform adjustments on most consumer electronics equipment. These do not need to be really expensive but poor quality tools are worse than useless and can cause damage. Needed tools include a selection of Philips and straight blade screwdrivers, needlenose pliers, wire cutters, tweezers, and dental picks. A jeweler's screwdriver set is a must particularly if you are working on compact equipment. For adjustments, a miniature (1/16" blade) screwdriver with a non-metallic tip is desirable both to prevent the presence of metal from altering the electrical properties of the circuit and to minimize the possibility of shorting something from accidental contact with the circuitry. For thermal or warmup problems, a can of 'cold spray' or 'circuit chiller' (they are the same) and a heat gun or blow dryer come in handy to identify components whose characteristics may be drifting with temperature. Using the extension tube of the spray can or making a cardboard nozzle for the heat gun can provide very precise control of which components you are affecting. For info on useful chemicals, adhesives, and lubricants, see "Repair Briefs, an Introduction" as well as other documents available at this site.
The ease and quality of your work will depend both on proper soldering as well as desoldering (often called rework) equipment. * A low wattage (25 W) iron for delicate components including discrete semiconductors, ICs, other small parts). * A medium wattage (40-50W) iron for heavy duty circuit board work including power components, power plane connections, and large transformers). * A 100-140 W soldering gun for chassis connections. Three wire grounded soldering equipment is recommended but I do not consider it essential for this type of repair work. However, a temperature regulated soldering station is a really nice piece of equipment if you can afford it or happen on a really good deal. I consider fine gauge rosin core solder (.030 or less) to be best for most applications (e.g., Ersin Multicore). * Desoldering pump - SoldaPullit or similar 'solder sucker' for removing components easily and usually nondestructively. SolderWick is also handy for cleaning up desoldered connections. A vacuum rework station is not needed unless you are removing your soldered in 500 pin Intel P6!
Soldering is a skill that is handy to know for many types of construction and repair. For modern small appliances, it is less important than it once was as solderless connectors have virtually replaced solder for internal wiring. However, there are times where soldering is more convenient. Use of the proper technique is critical to reliability and safety. A good solder connection is not just a bunch of wires and terminals with solder dribbled over them. When done correctly, the solder actually bonds to the surface of the metal (usually copper) parts. Effective soldering is by no means difficult but some practice may be needed to perfect your technique. The following guidelines will assure reliable solder joints: * Only use rosin core solder (e.g., 60/40 tin/lead) for electronics work. A 1 pound spool will last a long time and costs about $10. Suggested diameter is .030 to .060 inches for appliances. The smaller size is preferred as it will be useful for other types of precision electronics repairs or construction as well. The rosin is used as a flux to clean the metal surface to assure a secure bond. NEVER use acid core solder or the stuff used to sweat copper pipes! The flux is corrosive and it is not possible to adequately clean up the connections afterward to remove all residue. * Keep the tip of the soldering iron or gun clean and tinned. Buy tips that are permanently tinned - they are coated and will outlast countless normal copper tips. A quick wipe on a wet sponge when hot and a bit of solder and they will be as good as new for a long time. (These should never be filed or sanded). * Make sure every part to be soldered - terminal, wire, component leads - is free of any surface film, insulation, or oxidation. Fine sandpaper or an Xacto knife may be used, for example, to clean the surfaces. The secret to a good solder joint is to make sure everything is perfectly clean and shiny and not depend on the flux alone to accomplish this. Just make sure the scrapings are cleared away so they don't cause short circuits. * Start with a strong mechanical joint. Don't depend on the solder to hold the connection together. If possible, loop each wire or component lead through the hole in the terminal. If there is no hole, wrap them once around the terminal. Gently anchor them with a pair of needlenose pliers. * Use a properly sized soldering iron or gun: 20-25 W iron for fine circuit board work; 25-50 W iron for general soldering of terminals and wires and power circuit boards; 100-200 W soldering gun for chassis and large area circuit planes. With a properly sized iron or gun, the task will be fast - 1 to 2 seconds for a typical connection - and will result in little or no damage to the circuit board, plastic switch housings, insulation, etc. Large soldering jobs will take longer but no more than 5 to 10 seconds for a large expanse of copper. If it is taking too long, your iron is undersized for the task, is dirty, or has not reached operating temperature. For appliance work there is no need for a fancy soldering station - a less than $10 soldering iron or $25 soldering gun as appropriate will be all that is required. * Heat the parts to be soldered, not the solder. Touch the end of the solder to the parts, not the soldering iron or gun. Once the terminal, wires, or component leads are hot, the solder will flow via capillary action, fill all voids, and make a secure mechanical and electrical bond. Sometimes, applying a little from each side will more effectively reach all nooks and crannies. * Don't overdo it. Only enough solder is needed to fill all voids. The resulting surface should be concave between the wires and terminal, not bulging with excess solder. * Keep everything absolutely still for the few seconds it takes the solder to solidify. Otherwise, you will end up with a bad connection - what is called a 'cold solder joint'. * A good solder connection will be quite shiny - not dull gray or granular. If your result is less than perfect reheat it and add a bit of new solder with flux to help it reflow. Practice on some scrap wire and electronic parts. It should take you about 3 minutes to master the technique!
Occasionally, it will be necessary to remove solder - either excess or to replace wires or components. A variety of tools are available for this purpose. The one I recommend is a vacuum solder pump called 'SoldaPullet' (about $20). Cock the pump, heat the joint to be cleared, and press the trigger. Molten solder is sucked up into the barrel of the device leaving the terminal nearly free of solder. Then use a pair of needlenose pliers and a dental pick to gently free the wires or component. Other approaches that may be used in place of or in addition to this: Solder Wick which is a copper braid that absorbs solder via capillary action; rubber bulb type solder pumps, and motor driven vacuum solder rework stations (pricey). See the document: "Troubleshooting and Repair of Consumer Electronics Equipment" for additional info on desoldering of electronic components.
The thermoplastic used to mold many common cheap connectors softens or melts at relatively low temperatures. This can result in the pins popping out or shifting position (even shorting) as you attempt to solder to them to replace a bad connection, for example. One approach that works in some cases is to use the mating socket to stabilize the pins so they remain in position as you solder. The plastic will still melt - not as much if you use an adequately sized iron since the socket will act as a heat sink - but will not move. An important consideration is using the proper soldering iron. In some cases, a larger iron is better - you get in and out more quickly without heating up everything in the neighborhood.
Don't start with the electronic test equipment, start with some analytical thinking. Many problems associated with consumer electronic equipment do not require a schematic (though one may be useful). The majority of problems with consumer electronics equipment are mechanical and can be dealt with using nothing more than a good set of precision hand tools; some alcohol, degreaser, contact cleaner, light oil and grease; and your powers of observation (and a little experience). Your built in senses and that stuff between your ears represents the most important test equipment you have. A DMM or VOM is necessary for checking of power supply voltages and testing of sensors, LEDs, switches, and other small components. This does not need to be expensive but since you will be depending on its readings, reliability is important. Even a relatively inexpensive DMM from Radio Shack will be fine for most repair work. You will wonder how you ever lived without one! Cost: $25-50. Unless you get deep into electronic repair, a high bandwidth oscilloscope is not required. However, a relatively inexpensive 5 or 10 MHz dual trace scope is very handy and you will find all kinds of uses for it. Such a scope should cost less than $150 on the used market. There are several specific pieces of test equipment that you may already own which are required depending on the devices being fixed. Audio equipment: * Stereo tuner or other audio signal source. An audio signal generator is nice but not really essential. * An audio amp connected to a loudspeaker. The input should be selectable between line level and mic level and be brought out through a shielded cable to a test probe and ground clip. This is useful for tracing an audio circuit to determine where a signal is getting lost. Inexpensive signal tracers are also available but this option is likely free. * Prerecorded and garbage cassettes or tapes for testing of component and walkman tape transports. Video games, cable boxes, and other video sources: * A TV (preferably color) with RF (antenna) inputs connected to a VCR with a working tuner and RF modulator or a TV with both RF and A/V (RCA jacks) inputs. * A known good game cartridge to confirm that the problem is in the game console. Telephone equipment: * A working tone dialing phone. If I had a choice, it would be a good old reliable ATT Touch Tone desk phone. * A dual connector phone jack. Two independent phone lines are desirable for answering machine or modem testing. * A PC or laptop with a fax-modem (for modem and fax machine testing). * A low voltage DC power supply or wall wart to perform certain tests without a telephone connection or phone line simulator. * A handy-dandy phone line tester. The inexpensive variety is just a pair of LEDs in series with a resistor for each line attached to an RJ11 connector. However, this is much more convenient than fumbling with a multimeter! You can buy one at Radio Shack (about $7) or easily build your own. See the section: "Handy-dandy phone line tester" for details.
This simple device (total cost about $3) will show at a glance the status of all of the phone lines connected to a modular jack. Parts list: Surface mount RJ11 modular jack, RJ11 extension cord. For each phone line: 2 LEDs (red and green), 10K resistor. Construct the following circuit for each line and attach to the appropriate color terminals/wires of the modular jack: 10K Green LED Line 1: (Green) o------/\/\-----+--------|>|-------+------o (Red Line 2: (Black) | Wiring Correct | (Yellow) Line 3: (White) | | (Blue) | Red LED | +--------|<|-------+ Reverse Polarity Note: Polarity of Tip and Ring are reversed with respect to the wire colors because of swap that occurs using the RJ11 extension cord. Mount the LEDs in holes drilled in the plastic cover of the modular jack (making sure they clear the base when the cover is screwed down). To test old style 4 prong phone jacks, use an adapter on the end of the RJ11 extension cord. Correctly wired lines will light up green, reverse polarity will be red, dead line will be dark, line-in-use will be dark or nearly dark. If you catch a line that is ringing. both LEDs will flicker. Putting just the LED portion (leave out the resistor) of this circuit in *series* with the phone line will implement an off-hook (in use) indicator.
Yes, you will void the warranty, but you knew this already. Note: the sections on loudspeakers, cameras, and watches have additional 'getting inside' info. Manufacturers seem to take great pride in being very mysterious as to how to open their equipment. Not always, but this is too common to just be a coincidence. A variety of techniques are used to secure the covers on consumer electronic equipment: 1. Screws. Yes, many still use this somewhat antiquated technique. Sometimes, there are even embossed arrows on the case indicating which screws need to be removed to get at the guts. In addition to obvious screw holes, there may be some that are only accessible when a battery or cassette compartment is opened or a trim panel is popped off. These will often be of the Philips variety. (Strictly speaking, many of these are not actual Philips head screws but a slight variation. Nonetheless, a Philips screwdriver of suitable size will work on them.) A precision jeweler's screwdriver set including miniature Philips head drivers is a must for repair of miniature portable devices. Sometimes, you will find Torx or a variety of security type fasteners. Suitable driver bits are available. Sometimes, you can improvise using regular tools. In the case of security Torx, the center post can usually be broken off with a pair of needlenose pliers allowing a normal Torx driver to be used. In a pinch, a suitable size hex wrench can substitute for a Torx driver. Places like MCM Electronics carry a variety of security bits. 2. Hidden screws. These will require prying up a plug or peeling off a decorative decal. It will be obvious that you were tinkering - it is virtually impossible to put a decal back in an undetectable way. Sometimes the rubber feet can be pryed out revealing screw holes. For a stick-on label, rubbing your finger over it may permit you to locate a hidden screw hole. Just puncture the label to access the screw as this may be less messy then attempting to peel it off. 3. Snaps. Look around the seam between the two halves. You may (if you are lucky) see points at which gently (or forcibly) pressing with a screwdriver will unlock the covers. Sometimes, just going around the seam with a butter knife will pop the cover at one location which will then reveal the locations of the other snaps. 4. Glue. Or more likely, the plastic is fused together. This is particularly common with AC adapters (wall warts). In this case, I usually carefully go around the seam with a hacksaw blade taking extreme care not to go through and damage internal components. Reassemble with plastic electrical tape. 5. It isn't designed for repair. Don't laugh. I feel we will see more and more of this in our disposable society. Some devices are totally potted in Epoxy and are throwaways. With others, the only way to open them non-destructively is from the inside. Don't force anything unless you are sure there is no alternative - most of the time, once you determine the method of fastening, covers will come apart easily. If they get hung up, there may be an undetected screw or snap still in place. The most annoying (to be polite) situation is when after removing the 18 screws holding the case together (losing 3 of them entirely and mangling the heads on 2 others), removing three subassemblies, and two other circuit boards, you find that the adjustment you wanted was accessible through a hole in the case just by partially peeling back a rubber hand grip! When reassembling the equipment make sure to route cables and other wiring such that they will not get pinched or snagged and possibly broken or have their insulation nicked or pierced and that they will not get caught in moving parts. Replace any cable ties that were cut or removed during disassembly and add additional ones of your own if needed. Some electrical tape may sometimes come in handy to provide insulation insurance as well.
This should be the first step in any inspection and cleaning procedure. Do not be tempted to use compressed air! I would quicker use a soft brush to carefully dust off the circuit boards and power supply. Work in such a way that the resulting dust does not fall on the mechanical parts. For intricate mechanisms, using compressed air could dislodge dirt and dust which may then settle on lubricated parts contaminating them. High pressure air could move oil or grease from where it is to where it should not be. If you are talking about a shop air line, the pressure may be much much too high and there may be contaminants as well. A Q-tip (cotton swab) moistened with politically correct alcohol can be used to remove dust and dirt from various surfaces of the deck (in addition to the normal proper cleaning procedures for the guides, rollers, heads, wheels, belts, etc.)
We have all done this: a tiny washer or spring pops off and disappears from sight inside the guts of the unit. Don't panic. First - unplug it if AC powered. Remove the battery pack if possible from a portable device. Try to locate the part with a bright light without moving anything. You may have gotten lucky (yeh, right). Next, over an area where a dropped part will be visible (not a shag carpet!), try any reasonable means to shake it loose - upside down, a little gently tapping and shaking, etc. A hard surface is better in some ways as you might hear the part drop. On the other hand it may bounce into the great beyond. If this does not work, you have two options: 1. Assume that the part has landed in a place that will not cause future problems. There could be electrical problems if it is metallic and shorts out some circuitry or there could be mechanical problems if it jams some part of the mechanism. There is an excellent chance that the part will never cause any harm. What chance? I don't know, maybe 99%. It is not worth taking the unit to pieces to locate the part. You are more likely to damage something else in the process. Obtain a replacement and get on with your life. The exception is, of course, if you now begin experiencing problems you **know** were not there before. 2. Take the unit to pieces in an attempt to locate the part. For all you know, it may be clear across the room and you will never find it inside. If all the gymnastics have not knocked it loose, then it may be really wedged somewhere and will stay there - forever. If the unit behaves normally, then in all likelihood it will continue to do so. To prevent this sort of thing from happening in the future you will no doubt be much more careful. Sure you will! Some suggestions to prevent ejection of an E-clip, split washer, or spring into the great beyond: * Construct a paper dam around the area. * Tie a thread or fine wire around the part before attempting to remove it. Keep this 'safety line' on until after it has been reinstalled, then just pull it free. * Keep one finger on the part as you attempt to pop it free. * Hold onto the part with a pair of needlenose pliers or tweezers while prying with a small screwdriver.Go to [Next] segment
Go to [Table 'O Contents]