Contents:
The purpose of this set of guidelines is not to frighten you but rather to make you aware of the appropriate precautions. Appliance repair can be both rewarding and economical. Just be sure that it is also safe! * Don't work alone - in the event of an emergency another person's presence may be essential. * Always keep one hand in your pocket when anywhere around a powered line-connected or high voltage system. * Wear rubber bottom shoes or sneakers. * Wear eye protection - large plastic lensed eyeglasses or safety goggles. * Don't wear any jewelry or other articles that could accidentally contact circuitry and conduct current, or get caught in moving parts. * Set up your work area away from possible grounds that you may accidentally contact. * Know your equipment: small appliances with 2 prong plugs do not use any part of the outside case for carrying current. Any metal parts of the case will either be totally isolated or possibly connected to one side of the line through a very high value resistor and/or very low value capacitor. However, there may be exceptions. And, failures may occur. Appliances with 3 prong plugs will have the case and any exposed metal parts connected to the safety ground. * If circuit boards or other subassemblies need to be removed from their mountings, put insulating material between them and anything they may short to. Hold them in place with string or electrical tape. Prop them up with insulation sticks - plastic or wood. * Parts of heating appliances can get very hot very quickly. Always carefully test before grabbing hold of something you will be sorry about later. * If you need to probe, solder, or otherwise touch circuits with power off, discharge (across) large power supply filter capacitors with a 2 W or greater resistor of 100-500 ohms/V approximate value (e.g., for a 200 V capacitor use a 50 K ohm resistor). The only places you are likely to find large capacitors in small appliance repair are in induction motor starting or running circuitry or the electronic ballasts of fluorescent fixtures. * Connect/disconnect any test leads with the equipment unpowered and unplugged. Use clip leads or solder temporary wires to reach cramped locations or difficult to access locations. * Perform as many tests as possible with the device unplugged. Even with the power switch supposedly off, if the unit is plugged into a live outlet, line voltage may be present in unexpected places or probing may activate a motor due to accidentally pressing a microswitch. Most parts in household appliances and power tools can be can be tested using only an ohmmeter or continuity checker. * If you must probe live, put electrical tape over all but the last 1/16" of the test probes to avoid the possibility of an accidental short which could cause damage to various components. Clip the reference end of the meter or scope to the appropriate ground return so that you need to only probe with one hand. * Use an isolation transformer if there is any chance of contacting line connected circuits. A Variac(tm) is not an isolation transformer! The use of a GFCI (Ground Fault Circuit Interrupter) protected outlet is a good idea but will not protect you from shock from many points in a line connected TV or monitor, or the high voltage side of a microwave oven, for example. (Note however, that, a GFCI may nuisance trip at power-on or at other random times due to leakage paths (like your scope probe ground) or the highly capacitive or inductive input characteristics of line powered equipment.) A fuse or circuit breaker is too slow and insensitive to provide any protection for you or in many cases, your equipment. However, these devices may save your scope probe ground wire should you accidentally connect it to a live chassis. * Don't attempt repair work when you are tired. Not only will you be more careless, but your primary diagnostic tool - deductive reasoning - will not be operating at full capacity. * Finally, never assume anything without checking it out for yourself! Don't take shortcuts!
There is no hard and fast rule. Personally, I do unplug heating appliances when I am done with them. The quality of internal construction is not always that great and this is a minor annoyance to avoid a possible fire hazard should something fail or should such an appliance accidentally be left on. BTW, electronic equipment should always be unplugged during lightning storms since it may be very susceptible to power surge and lightning damage. Don't forget the telephones and computer modems as well. This is not as much of a problem with small appliances that do not include electronic controllers as except for direct lightning strikes, the power switch will provide protection.
Many problems have simple solutions. Don't immediately assume that your problem is some combination of esoteric complex convoluted failures. For a dead appliance, the most likely cause might just be a bad line cord or plug! Try to remember that the problems with the most catastrophic impact on operation (an appliance that blows fuses) usually have the simplest causes (a wire shorting due to frayed insulation). If you get stuck, sleep on it. Sometimes, just letting the problem bounce around in your head will lead to a different more successful approach or solution. Don't work when you are really tired - it is both dangerous and mostly non-productive (or possibly destructive - especially with AC line powered appliances). Whenever working on precision equipment, make copious notes and diagrams. Yes, I know, a toaster may not exactly be precision equipment, but trust me. You will be eternally grateful when the time comes to reassemble the unit. Most connectors are keyed against incorrect insertion or interchange of cables, but not always. Apparently identical screws may be of differing lengths or have slightly different thread types. Little parts may fit in more than one place or orientation. Etc. Etc. Pill bottles, film canisters, and plastic ice cube trays come in handy for sorting and storing screws and other small parts after disassembly. Select a work area which is well lighted and where dropped parts can be located - not on a deep pile shag rug. Something like a large plastic tray with a slight lip may come in handy as it prevents small parts from rolling off of the work table. The best location will also be relatively dust free and allow you to suspend your troubleshooting to eat or sleep or think without having to pile everything into a cardboard box to eat dinner.
A basic set of precision hand tools will be all you need to work on most appliances. These do not need to be really expensive but poor quality tools are worse than useless and can cause damage. Stanley and Craftsman tools are fine. Needed tools include a selection of Philips and straight blade screwdrivers, socket drivers, open end or adjustable wrenches of various sizes, needlenose pliers, wire cutters, tweezers, and dental picks. An electric drill or drill press with a set of small (1/16" to 1/4") high quality high speed drill bits is handy for some types of restoration where new holes need to be provided. A set of machine screw taps is also useful at times. A medium power soldering iron and rosin core solder (never never use acid core solder or the stuff for sweating copper pipes on electrical or electronic repairs!) will be required if you need to make or replace any soldered connections. A soldering gun is desirable for any really beefy soldering. See the section: "Soldering techniques". A crimping tool and an assortment of solderless connectors often called 'lugs' will be needed to replace damaged or melted terminals in small appliances. See the section: "Solderless connectors". Old dead appliances can often be valuable sources of hardware and sometimes even components like switches and heating elements. While not advocating being a pack rat, this does have its advantages at times.
Soldering is a skill that is handy to know for many types of construction and repair. For modern small appliances, it is less important than it once was as solderless connectors have virtually replaced solder for internal wiring. However, there are times where soldering is more convenient. Use of the proper technique is critical to reliability and safety. A good solder connection is not just a bunch of wires and terminals with solder dribbled over them. When done correctly, the solder actually bonds to the surface of the metal (usually copper) parts. Effective soldering is by no means difficult but some practice may be needed to perfect your technique. The following guidelines will assure reliable solder joints: * Only use rosin core solder (e.g., 60/40 tin/lead) for electronics work. A 1 pound spool will last a long time and costs about $10. Suggested diameter is .030 to .060 inches for appliances. The smaller size is preferred as it will be useful for other types of precision electronics repairs or construction as well. The rosin is used as a flux to clean the metal surface to assure a secure bond. NEVER use acid core solder or the stuff used to sweat copper pipes! The flux is corrosive and it is not possible to adequately clean up the connections afterward to remove all residue. * Keep the tip of the soldering iron or gun clean and tinned. Buy tips that are permanently tinned - they are coated and will outlast countless normal copper tips. A quick wipe on a wet sponge when hot and a bit of solder and they will be as good as new for a long time. (These should never be filed or sanded). * Make sure every part to be soldered - terminal, wire, component leads - is free of any surface film, insulation, or oxidation. Fine sandpaper or an Xacto knife may be used, for example, to clean the surfaces. The secret to a good solder joint is to make sure everything is perfectly clean and shiny and not depend on the flux alone to accomplish this. Just make sure the scrapings are cleared away so they don't cause short circuits. * Start with a strong mechanical joint. Don't depend on the solder to hold the connection together. If possible, loop each wire or component lead through the hole in the terminal. If there is no hole, wrap them once around the terminal. Gently anchor them with a pair of needlenose pliers. * Use a properly sized soldering iron or gun: 20-25 W iron for fine circuit board work; 25-50 W iron for general soldering of terminals and wires and power circuit boards; 100-200 W soldering gun for chassis and large area circuit planes. With a properly sized iron or gun, the task will be fast - 1 to 2 seconds for a typical connection - and will result in little or no damage to the circuit board, plastic switch housings, insulation, etc. Large soldering jobs will take longer but no more than 5 to 10 seconds for a large expanse of copper. If it is taking too long, your iron is undersized for the task, is dirty, or has not reached operating temperature. For appliance work there is no need for a fancy soldering station - a less than $10 soldering iron or $25 soldering gun as appropriate will be all that is required. * Heat the parts to be soldered, not the solder. Touch the end of the solder to the parts, not the soldering iron or gun. Once the terminal, wires, or component leads are hot, the solder will flow via capillary action, fill all voids, and make a secure mechanical and electrical bond. Sometimes, applying a little from each side will more effectively reach all nooks and crannies. * Don't overdo it. Only enough solder is needed to fill all voids. The resulting surface should be concave between the wires and terminal, not bulging with excess solder. * Keep everything absolutely still for the few seconds it takes the solder to solidify. Otherwise, you will end up with a bad connection - what is called a 'cold solder joint'. * A good solder connection will be quite shiny - not dull gray or granular. If your result is less than perfect reheat it and add a bit of new solder with flux to help it reflow. Practice on some scrap wire and electronic parts. It should take you about 3 minutes to master the technique!
Occasionally, it will be necessary to remove solder - either excess or to replace wires or components. A variety of tools are available for this purpose. The one I recommend is a vacuum solder pump called 'SoldaPullet' (about $20). Cock the pump, heat the joint to be cleared, and press the trigger. Molten solder is sucked up into the barrel of the device leaving the terminal nearly free of solder. Then use a pair of needlenose pliers and a dental pick to gently free the wires or component. Other approaches that may be used in place of or in addition to this: Solder Wick which is a copper braid that absorbs solder via capillary action; rubber bulb type solder pumps, and motor driven vacuum solder rework stations (pricey). See the document: "Troubleshooting and Repair of Consumer Electronics Equipment" for additional info on desoldering of electronic components.
The thermoplastic used to mold many common cheap connectors softens or melts at relatively low temperatures. This can result in the pins popping out or shifting position (even shorting) as you attempt to solder to them to replace a bad connection, for example. One approach that works in some cases is to use the mating socket to stabilize the pins so they remain in position as you solder. The plastic will still melt - not as much if you use an adequately sized iron since the socket will act as a heat sink - but will not move. An important consideration is using the proper soldering iron. In some cases, a larger iron is better - you get in and out more quickly without heating up everything in the neighborhood.
Most internal connections in small appliances are made using solderless connectors. These include twist on WireNuts(tm) and crimped terminal lugs of various sizes and configurations. WireNuts allow multiple wires to be joined by stripping the ends and then 'screwing' an insulated thimble shaped plastic nut onto the grouped ends of the wires. A coiled spring (usually) inside tightly grips the bare wires and results in a mechanically and electrically secure joint. For appliance repair, the required WireNuts will almost always already be present since they can usually be reused. If you need to purchase any, they come in various sizes depending on the number and size of the wires that can be handled. It is best to twist the individual conductor strands of each wire together and then twist the wires together slightly before applying the WireNut. Crimped connectors, called lugs, are very common in small appliances. One reason is that it is easier, faster, and more reliable, to make connections using these lugs with the proper crimping equipment than with solder. A lug consists of a metal sleeve which gets crimped over one or more wires, an insulating sleeve (usually, not all lugs have these), and a terminal connection: ring, spade, or push-on are typical. Lugs connect one or more wires to the fixed terminals found on switches, motors, thermostats, and so forth. There are several varieties: * Ring lugs - the end looks like an 'O' and must be installed on a threaded terminal of similar size to the opening in the ring. The screw or nut must be removed to replace a ring lug. * Spade lugs - the end looks like a 'U' and must be installed on a threaded terminal of similar size to the opening in the spade. These can be slipped on and off without entirely removing the screw or nut. * Push-on lugs - called 'FastOns' by one manufacturer. The push-on terminal makes a tight fit with a (usually) fixed 'flag'. There may also be a latch involved but usually just a pressure fit keeps the connection secure. However, excessive heat over time may weaken these types of connections, resulting in increased resistance, additional heating, and a bad connection or melt-down. The push-on variety are most common in small appliances. In the factory, the lugs are installed on the wires with fancy expensive equipment. For replacements, an inexpensive crimping tool and an assortment of lugs will suffice. The crimping tool looks like a pair of long pliers and usually combines a wire stripper and bolt cutter with the crimping function. It should cost about $6-10. The crimping tool 'squashes' the metal sleeve around the stripped ends of the wires to be joined. A proper crimp will not come apart if an attempt is made to pull the wires free - the wires will break somewhere else first. It is gas-tight - corrosion (within reason) will not affect the connection. Crimping guidelines: * Use the proper sized lug. Both the end that accepts the wire(s) and the end that screws or pushes on must be sized correctly. Easiest is to use a replacement that is identical to the original. Where this is not possible, match up the wire size and terminal end as closely as possible. There will be a minimum and maximum total wire cross sectional area that is acceptable for each size. Avoid the temptation to trim individual conductor strands from wires that will not fit - use a larger size lug. Although not really recommended, the bare wires can be doubled over to thicken them for use with a lug that is slightly oversize. * For heating appliances, use only high temperature lugs. This will assure that the connections do not degrade with repeated temperature cycles. * Strip the wire(s) so that they fit into the lug with just a bit showing out the other (screw or push-on) end. Too long and your risk interference with the terminals and/or shorting to other terminals. Too short and it is possible that one or more wires will not be properly positioned, will not be properly crimped, and may pull out or make a poor connection. The insulation of the wires should be within the insulating sleeve - there should be no bare wire showing behind the lug. * Crimp securely but don't use so much force that the insulating sleeve or metal sleeve is severed. Usually 1 or 2 crimps for the actual wire connection and 1 crimp to compress the insulating sleeve will be needed. * Test the crimp when complete - there should be no detectable movement of the wires. If there is, you didn't crimp hard enough or the lug is too large for your wires.
In order to make most connections, the plastic or other insulating covering must be removed to expose the bare copper conductors inside. The best way to do this is with a proper wire stripper which is either adjustable or has dedicated positions for each wire size. It is extremely important that the internal conductor (single wire or multiple strands) are undamaged. Nicks or loss of some strands reduces the mechanical and electrical integrity of the connection. In particular, a seriously nicked wire may break off at a later time - requiring an additional repair or resulting in a safety hazard or additional damage. The use of a proper wire stripper will greatly minimize such potential problems. A pen knife or Xacto knife can be used in a pinch but a wire stripper is really much much easier.
Screw terminals are often seen in appliances. In most cases, lugs are used to attach one or more wires to each terminal and when properly done, this usually is the best solution. However, in most cases, you can attach the wire(s) directly if a lug is not available: 1. The best mechanical arrangement is to put the wire under a machine screw or nut, lock washer, and flat washer. However, you will often see just the screw or nut (as in a lamp switch or wall socket). For most applications, this is satisfactory. 2. Avoid the temptation to put multiple wires around a single terminal unless you separate each one with a flat washer. 3. Strip enough of the wire to allow the bare wire to be wrapped once around the terminal. To much and some will poke out and might short to something; too little and a firm mechanical joint and electrical connection may be impossible. 4. For multistranded wire, tightly twist the strands of stripped wire together in a clockwise direction as viewed from the wire end. 5. Wrap the stripped end of the wire **clockwise** around the terminal post (screw or stud) so that it will be fully covered by the screw head, nut, or flat washer. This will insure that the wire is grabbed as the screw or nut is tightened. A pair of small needlenose pliers may help. 6. Hold onto the wire to keep it from being sucked in as the screw or nut is tightened. Don't overdo it - you don't need to sheer off the head of the screw to make a secure reliable connection. 7. Inspect the terminal connection: the bare wire should be fully covered by the head of the screw, nut, or flat washer. Gently tug on the wire to confirm that it is securely fastened.
Very little test equipment is needed for most household appliance repair. First, start with some analytical thinking. Many problems associated with household appliances do not require a schematic. Since the internal wiring of many appliances is so simple, you will be able to create your own by tracing the circuits in any case. However, for more complex appliances, a schematic may be useful as wires may run behind and under other parts and the operation of some custom switches may not obvious. The causes for the majority of problems will be self evident once you gain access to the interior - loose connections or broken wires, bad switches, open heating element, worn motor brushes, dry bearings. All you will need are some basic hand tools, a circuit and continuity tester, light oil and grease, and your powers of observation (and a little experience). Your built in senses and that stuff between your ears represents the most important test equipment you have. The following will be highly desirable for all but the most obvious problems: 1. Circuit tester (neon light) - This is used to test for AC power or confirm that it is off. For safety, nothing can beat the simplicity of a neon tester. Its use is foolproof as there are no mode settings or range selections to contend with. Touch its two probes to a circuit and if it lights, there is power. (This can also take the place of an Outlet tester but it is not as convenient (see below). Cost: $2-$3. 2. Outlet tester (grounds and miswiring) - This will confirm that a 3 prong outlet is correctly wired with respect to Hot, Neutral, and Ground. While not 100% assured of correct wiring if the test passes, the screwup would need to be quite spectacular. This simple device instantly finds missing Grounds and interchanged Hot and Neutral - the most common wiring mistakes. Just plug it into an outlet and if the proper two neon light are lit at full brightness, the outlet is most likely wired correctly. Cost: about $6. These are just a set of 3 neon bulbs+resistors across each pair of wires. If the correct bulbs light at full brightness - H-N, H-G - then the circuit is likely wired correctly. If the H-G light is dim or out or if both the H-G and G-N are dim, then you have no ground. If the N-G light is on and the H-G light is off, you have reversed H and N, etc. What it won't catch: Reversed N and G (unlikely unless someone really screwed up) and marginal connections (since the neon bulbs doesn't use much current). It also won't distinguish between 110 VAC and 220 VAC circuits except that the neon bulbs will glow much brighter on 220 VAC but without a direct comparison, this could be missed. For something that appears to test for everything but next week's weather: (From: Bill Harnell (bharne@adss.on.ca)). Get an ECOS 7105 tester! (ECOS Electronics Corporation, Oak Park, Illinois, 708-383-2505). Not cheap, however. It sold for $59.95 in 1985 when I purchased somewhere around 600 of them for use by our Customer Engineers for safety purposes! It tests for: Correct wiring, reversed polarity, open Ground, open Neutral, open Hot, Hot & Ground reversed, Hot on neutral, Hot unwired, other errors, over voltage (130 VAC+), under voltage (105 VAC-), Neutral to Ground short, Neutral to Ground reversal, Ground impedance test (2 Ohms or less ground impedance - in the equipment ground conductor). Their less expensive 7106 tester performs almost all of the above tests. FWIW, I have no interest in the ECOS Corporation of any kind. Am just a very happy customer. 3. Continuity tester (buzzer or light) - Since most problems with appliances boil down to broken connections, open heating elements, defective switches, shorted wires, and bad motor windings, a continuity tester is all that is needed for most troubleshooting. A simple battery operated buzzer or light bulb quickly identifies problems. If a connection is complete, the buzzer will sound or the light will come on. Note that a dedicated continuity tester is preferred over a similar mode on a multimeter because it will operate only at very low resistance. The buzzer on a multimeter sounds whenever the resistance is less than about 200 ohms - a virtual open circuit for much appliance wiring. A continuity tester can be constructed very easily from an Alkaline battery, light bulb or buzzer, some wire, and a set of test leads with probes. All of these parts are available at Radio Shack. AA, C, or D cell 1.5 V flashlight bulb or buzzer +| - +------------------+ Test probe 1 o-----------| |--------------| Bulb or buzzer |-------+ | +------------------+ | | Test probe 2 o-------------------------------------------------------+ CAUTION: Do not use this simple continuity tester on electronic equipment as there is a slight possibility that the current provided by the battery will be too high and cause damage. It is fine for most appliances. 4. GFCI tester - outlets installed in potentially wet or outdoor areas should be protected by a Ground Fault Circuit Interrupter (GFCI). A GFCI is now required by the NEC (Code) in most such areas. This tester will confirm that any outlets protected by a GFCI actually will trip the device if there is a fault. It is useful for checking the GFCI (though the test button should do an adequate job of this on its own) as well as identifying or testing any outlets downstream of the GFCI for protection. Wire a 3 prong plug with a 15 K ohm 1 W resistor between H and G. Insulate and label it! This should trip a GFCI protected outlet as soon as it is plugged in since it will produce a fault current of about 7 mA. Note that this device will only work if there is an actual Safety Ground connection to the outlet being tested. A GFCI retrofitted into a 2 wire installation without a Ground cannot be tested in this way since a GFCI does not create a Ground. However, jumpering this rig between the H and and a suitable earth ground (e.g., a cold water in an all copper plumbing system) should trip the GFCI. Therefore, first use an Outlet Tester (above) to confirm that there is a Safety Ground present. The test button works because it passes an additional current through the sense coil between Hot and Neutral tapped off the wiring at the line side of the GFCI and therefore doesn't depend on having a Ground. 5. Multimeter (VOM or DMM) - This is necessary for actually measuring voltages and resistances. Almost any type will do - even the $14.95 special from Sears. Accuracy is not critical for household appliance repair but reliability is important - for your safety if no other reason. It doesn't really matter whether it is a Digital MultiMeter (DMM) or analog Volt Ohm Meter (VOM). A DMM may be a little more robust should you accidentally put it on an incorrect scale. However, they both serve the same purpose. A cheap DMM is also not necessarily more accurate than a VOM just because it has digits instead of a meter needle. A good quality well insulated set of test leads and probes is essential. What comes with inexpensive multimeters may be too thin or flimsy. Replacements are available. Cost: $15-$50 for a multimeter that is perfectly adequate for home appliance repair. Note: For testing of household electrical wiring, a VOM or DMM can indicate voltage between wires which is actually of no consequence. This is due to the very high input resistance/impedance of the instrument. The voltage would read zero with any sort of load. See the section: "Phantom voltage measurements of electrical wiring". Once you get into electronic troubleshooting, an oscilloscope, signal generator, and other advanced (and expensive) test equipment will be useful. For basic appliance repair, such equipment would just gather dust.
Yes, you will void the warranty, but you knew this already. Appliance manufacturers seem to take great pride in being very mysterious as to how to open their equipment. Not always, but this is too common to just be a coincidence. A variety of techniques are used to secure the covers on consumer electronic equipment: 1. Screws. Yes, many still use this somewhat antiquated technique. Sometimes, there are even embossed arrows on the case indicating which screws need to be removed to get at the guts. In addition to obvious screw holes, there may be some that are only accessible when a battery compartment is opened or a trim panel is popped off. These are almost always of the Philips variety though more and more appliances are using Torx or security Torx type screws. Many of these are hybrid types - a slotted screwdriver may also work but the Philips or Torx is a whole lot more convenient. A precision jeweler's screwdriver set including miniature Philips head drivers is a must for repair of miniature portable devices. 2. Hidden screws. These will require prying up a plug or peeling off a decorative decal. It will be obvious that you were tinkering - it is virtually impossible to put a decal back in an undetectable way. Sometimes the rubber feet can be pryed out revealing screw holes. For a stick-on label, rubbing your finger over it may permit you to locate a hidden screw hole. Just puncture the label to access the screw as this may be less messy then attempting to peel it off. 3. Snaps. Look around the seam between the two halves. You may (if you are lucky) see points at which gently (or forcibly) pressing with a screwdriver will unlock the covers. Sometimes, just going around the seam with a butter knife will pop the cover at one location which will then reveal the locations of the other snaps. 4. Glue. Or more likely, the plastic is fused together. This is particularly common with AC adapters (wall warts). In this case, I usually carefully go around the seam with a hacksaw blade taking extreme care not to go through and damage internal components. Reassemble with plastic electrical tape. 5. It isn't designed for repair. Don't laugh. I feel we will see more and more of this in our disposable society. Some devices are totally potted in Epoxy and are 'throwaways'. With others, the only way to open them non-destructively is from the inside. Don't force anything unless you are sure there is no alternative - most of the time, once you determine the method of fastening, covers will come apart easily. If they get hung up, there may be an undetected screw or snap still in place. When reinstalling the screws, first turn them in a counter-clockwise direction with very slight pressure. You will feel them "click" as they fall into the already formed threads. Gently turn clockwise and see if they turn easily. If they do not, you haven't hit the previously formed threads - try again. Then just run them in as you normally would. You can always tell when you have them into the formed threads because they turn very easily for nearly the entire depth. Otherwise, you will create new threads which will quickly chew up the soft plastic. Note: these are often high pitch screws - one turn is more than one thread - and the threads are not all equal. The most annoying (to be polite) situation is when after removing the 18 screws holding the case together (losing 3 of them entirely and mangling the heads on 2 others), removing three subassemblies, and two other circuit boards, you find that the adjustment you wanted was accessible through a hole in the case just by partially peeling back a rubber hand grip! (It has happened to me). When reassembling the equipment make sure to route cables and other wiring such that they will not get pinched or snagged and possibly broken or have their insulation nicked or pierced and that they will not get caught in moving parts. This is particularly critical for AC line operated appliances and those with motors to minimize fire and shock hazard and future damage to the device itself. Replace any cable ties that were cut or removed during disassembly and add additional ones of your own if needed. Some electrical tape may sometimes come in handy to provide insulation insurance as well. As long as it does not get in the way, additional layers of tape will not hurt and can provide some added insurance against future problems. I often put a layer of electrical tape around connections joined with WireNuts(tm) as well just to be sure that they will not come off or that any exposed wire will not short to anything.
This should be the first step in any inspection and cleaning procedure. Appliances containing fans or blowers seem to be dust magnets - an incredible amount of disgusting fluffy stuff can build up in a short time - even with built-in filters. Use a soft brush (like a new cheap paint brush) to remove as much dirt, dust, and crud, as possible without disturbing anything excessively. Some gentle blowing (but no high pressure air) may be helpful in dislodged hard to get at dirt - but wear a dust mask. Don't use compressed air on intricate mechanisms, however, as it might dislodge dirt and dust which may then settle on lubricated parts and contaminating them. High pressure air could move oil or grease from where it is to where it should not be. If you are talking about a shop air line, the pressure may be much much too high and there may be contaminants as well. A Q-tip (cotton swab) moistened with politically correct alcohol can be used to remove dust and dirt from various hard to get at surfaces.Go to [Next] segment
Go to [Table 'O Contents]