Contents:
Notes On The Troubleshooting And Repair Of Television Sets
Copyright (c) 1994, 1995, 1996, 1997, 1998
All Rights Reserved
Reproduction of this document in whole or in part is permitted if both of the following conditions are satisfied:
Television in substantially its present form has been with us for nearly 50 years. It is a tribute to the National Television Standards Committee (NTSC) that the color television standards agreed upon in the early 1950s have performed remarkably well making quite efficient use of valuable radio spectrum space and the psychovisual characteristics of the human eye-brain system. However, HDTV (High Definition TV) will supplant and ultimately replace the current standards. We will all come to expect its superior resolution, freedom from noise and ghosting, and pure CD sound. Yet, the perceived quality of TV broadcasts and cable will never likely be the major issue with most consumers. Content will continue to be the biggest problem. It is likely that in roughly 15 years, HDTV - digitally processed and transmitted as 1s and 0s - will completely replace the current system. Acceptance in the marketplace is by no means assured but with the merging of TV and computers - with the Internet as a driving force - it would seem that the days of the stand-alone analog TV set are numbered.
The basic color television receiver must perform the same functions today as 40 years ago. (Since B/W is a subset of the color standard, most references in this document will be for color except as noted). A studio video monitor includes all of the functions of a television receiver except the tuner and IF (which rarely fail except for bad connections or perhaps lightning strikes to the antenna or cable connection). Therefore most of the repair information in this document is applicable to both TVs and studio monitors. Modern computer monitors share many similarities with TVs but the multisync and high scan rate deflection circuitry and more sophisticated power supplies complicates their servicing. As of this writing, all but the smallest TVs are based on the Cathode Ray Tube (CRT) as the display device. Tiny pocket sets, camcorder viewfinders, and the like have started using LCD (Liquid Crystal Display) panels but these are still inferior to the CRT for real time video. There has always been talk of 'the picture on the wall' display. While we are closer than ever to this possibility, I believe that mass production of an affordable wall mural TV screen is still decades away. The reason is simple economics - it is really hard to beat the simplicity of the shadow mask CRT. For example, a decent quality active matrix color LCD panel may add $1000 to the cost of a notebook computer compared to $200 for a VGA monitor. More of these panels go in the dumpster than make it to product do to manufacturing imperfections. Projection - large screen - TVs may, on the other hand, be able to take advantage of a novel development in integrated micromachining - the Texas Instruments Inc. Digital Micromirror Device (DMD). This is basically an integrated circuit with a tiltable micromirror for each pixel fabricated on top of a static memory - RAM - cell. This technology would permit nearly any size projection display to be produced and would therefore be applicable to HDTV. Since it is a reflective device, the light source can be as bright as needed. However, this is still not a commercial product but stay tuned.
Unlike VCRs or CD players where any disasters are likely to only affect your pocketbook, TVs can be dangerous. Read, understand, and follow the set of safety guidelines provided later in this section whenever working on TVs, monitors, or other similar high voltage equipment. If you do go inside, beware: line voltage (on large caps) and high voltage (on CRT) for long after the plug is pulled. There is the added danger of CRT implosion for carelessly dropped tools and often sharp sheetmetal shields which can injure if you should have a reflex reaction upon touching something you should not touch. In inside of a TV or monitor is no place for the careless or naive. Having said that, a basic knowledge of how a TV set works and what can go wrong can be of great value even if you do not attempt the repair yourself. It will enable you to intelligently deal with the service technician. You will be more likely to be able to recognize if you are being taken for a ride by a dishonest or just plain incompetent repair center. For example, a faulty picture tube CANNOT be the cause of a color television only displaying shows in black-and-white. The majority of consumers probably do not know even this simple fact. Such a problem is usually due to a bad capacitor or other 10 cent part. This document will provide you with the knowledge to deal with a large percentage of the problems you are likely to encounter with your TVs. It will enable you to diagnose problems and in many cases, correct them as well. With minor exceptions, specific manufacturers and models will not be covered as there are so many variations that such a treatment would require a huge and very detailed text. Rather, the most common problems will be addressed and enough basic principles of operation will be provided to enable you to narrow the problem down and likely determine a course of action for repair. In many cases, you will be able to do what is required for a fraction of the cost that would be charged by a repair center. Should you still not be able to find a solution, you will have learned a great deal and be able to ask appropriate questions and supply relevant information if you decide to post to sci.electronics.repair. It will also be easier to do further research using a repair text such as the ones listed at the end of this document. In any case, you will have the satisfaction of knowing you did as much as you could before taking it in for professional repair. With your new-found knowledge, you will have the upper hand and will not easily be snowed by a dishonest or incompetent technician.
If you need to send or take the TV to a service center, the repair could easily exceed half the cost of a new TV. Service centers may charge up to $50 or more for providing an initial estimate of repair costs but this will usually be credited toward the total cost of the repair (of course, they may just jack this up to compensate for their bench time). TV prices have been dropping almost as fast as PC prices. Therefore, paying such prices for repair just may not make sense. Except for picture tube problems, most TV faults can be corrected without expensive parts, however. Keeping a 5 year old TV alive may be well worthwhile as basic TV performance and important features have not changed in a long time. If you can do the repairs yourself, the equation changes dramatically as your parts costs will be 1/2 to 1/4 of what a professional will charge and of course your time is free. The educational aspects may also be appealing. You will learn a lot in the process. Thus, it may make sense to repair that old clunker for your game room or beach house. (I would suggest the kid's room but most TV watching just rots the brain anyhow so a broken TV may be more worthwhile educationally than one that works.)
A TV set includes the following functional blocks: 1. Low voltage power supply (some may also be part of (2)). Most of the lower voltages used in the TV may be derived from the horizontal deflection circuits. Sometimes, there is a separate switching power supply but this would be the exception. Rectifier/filter capacitor/regulator from AC line provides the B+ to the switching power supply or horizontal deflection system. Degauss operates off of the line whenever power is turned on (after having been off for a few minutes) to demagnetize the CRT. 2. Horizontal deflection. These circuits provide the waveforms needed to sweep the electron beam in the CRT across and back some 15,734 times per second (for NTSC). The horizontal sync pulse from the sync separator locks the horizontal deflection to the video signal. 3. Vertical deflection. These circuits provide the waveforms needed to sweep the electron beam in the CRT from top to bottom and back 60 times per second (for NTSC). The vertical sync pulse from the sync separator locks the vertical deflection to the video signal. 4. CRT high voltage (also part of (2)). A modern color CRT requires up to 30 KV for a crisp bright picture. Rather than having a totally separate power supply, nearly every TV on the planet derives the HV (as well as many other voltages) from the horizontal deflection using a special transformer called a 'flyback' or 'Line OutPut Transformer (LOPT) for those of you on the other side of the lake. 5. Tuner, IF, AGC, video and audio demodulators. Input is the antenna or cable signal and output are baseband video and audio signals. There is usually someplace inside the TV where line level video and audio are present but it may not be accessible from the outside of the cabinet unless you paid for the more expensive model with the A/V option. Very often, the tuner is a shielded metal box positioned on the bottom right (as viewed from the front) separate from the main circuit board. Sometimes it is on the main circuit board. The IF section may be in either place. On older or cheap TVs with a knob tuner, this is usually mounted to the front panel by itself. There are usually separate boxes for the VHF and UHF tuners. 6. Chroma demodulator. Input is the baseband video signal. Outputs are the individual signals for the red, green, and blue video to the CRT. 7. Video drivers (RGB). These are almost always located on a little circuit board plugged directly onto the neck of the CRT. They boost the output of the chroma demodulator to the hundred volts or so needed to drive the cathodes of the CRT. 8. Sync separator. Input is baseband video. Output is horizontal and vertical sync pulses to control the deflection circuits. 9. Audio amplifier/output. The line level audio is amplified to drive a set of speakers. If this is a stereo TV, then these circuits must also perform the stereo demultiplexing. 10. System control. Most modern TVs actually use a microcontroller - a fixed program microcomputer to perform all user interface and control functions from the front panel and remote control. These are becoming increasingly sophisticated. However, they do not fail often. Older TVs use a bunch of knobs and switches and these are prone to wear and dirt. Most problems occur in the horizontal deflection and power supply sections. These run at relatively high power levels and some components run hot. The high voltage section is prone to breakdown and arcing as a result of hairline cracks, humidity, dirt, etc. The tuner components are usually quite reliable unless the antenna experiences a lightning strike. However, it seems that even after 20+ years of solid state TVs, manufacturers still cannot reliably solder the tuner connectors and shields so that bad solder connections in these areas are common even in new sets.
In order to achieve the necessary brightness with a large display format, three separate monochrome CRTs are used with optics to combine the three images properly at the screen. This creates an entire set of additional problems in design. (From: Jeroen H. Stessen (Jeroen.Stessen@ehv.ce.philips.com)). The average projection TV has about twice as many parts as its direct-view counterpart. Some of the extra parts are essential for projection because CRT projection tubes require dynamic convergence. The other extra parts have to do with the fact that a more expensive TV also should have some extra features, like Dolby ProLogic sound, a satellite tuner and such. Generally, the electronics are based on a standard chassis that is also used for direct-view CRT television. Even the deflection circuits require minor adaptations at most. The high-voltage circuit is different because the EHT, focus and G2 voltages must be distributed over 3 CRTs. So this requires a special high-voltage part, which also includes an EHT capacitor and bleeder. There will be 3 CRT panels with video amplifiers. Because of the extremely high brightness, projection tubes will burn the phosphor screen immediately in fault conditions so a protection circuit is essential. And last but certainly not least, there is the dynamic convergence panel. The heart is a waveform generator IC, often of a Japanese brand but nowadays there's also a digital variant by Philips. The old-fashioned way requires many many potentiometers to program the waveforms. Then there's 5 or 6 convergence amplifiers and a corresponding extra power supply. And usually this is where the single deflection circuits are distributed to the 3 CRTs. At the same time the deflection currents are sensed for the protection circuits. Designing a PTV from a DVTV requires several man-years of work. In the factory, a special corner is devoted to the assembly. There you'll find specially educated people and the speed of the assembly line is a lot lower than usual. It requires many more adjustments, e.g. 3 optical and 3 electrical focus adjustments and then convergence.
The books listed in the section: "Suggested references" include additional information on the theory and implementation of the technology of television standards and TV receivers.
A number of organizations have compiled databases covering thousands of common problems with VCRs, TVs, computer monitors, and other electronics equipment. Most charge for their information but a few, accessible via the Internet, are either free or have a very minimal monthly or per-case fee. In other cases, a limited but still useful subset of the for-fee database is freely available. A tech-tips database is a collection of problems and solutions accumulated by the organization providing the information or other sources based on actual repair experiences and case histories. Since the identical failures often occur at some point in a large percentage of a given model or product line, checking out a tech-tips database may quickly identify your problem and solution. In that case, you can greatly simplify your troubleshooting or at least confirm a diagnosis before ordering parts. My only reservation with respect to tech-tips databases in general - this has nothing to do with any one in particular - is that symptoms can sometimes be deceiving and a solution that works in one instance may not apply to your specific problem. Therefore, an understanding of the hows and whys of the equipment along with some good old fashioned testing is highly desirable to minimize the risk of replacing parts that turn out not to be bad. The other disadvantage - at least from one point of view - is that you do not learn much by just following a procedure developed by others. There is no explanation of how the original diagnosis was determined or what may have caused the failure in the first place. Nor is there likely to be any list of other components that may have been affected by overstress and may fail in the future. Replacing Q701 and C725 may get your equipment going again but this will not help you to repair a different model in the future. Having said that, here are three tech-tips sites for computer monitors, TVs, and VCRs: * http://www.anatekcorp.com/techforum.htm (currently free). * http://www.repairworld.com/ ($8/month). * http://elmswood.guernsey.net/ (Free, very limited). * http://ramiga.rnet.cgl.com/electronics/info.html (free large text files). This one has quite a bit of info for just TVs (at present): * http://home.inreach.com/ba501/Tech_Tip_Page.htm These types of sites seem to come and go so it is worth checking them out from time-to-time even if you don't have a pressing need. If possible, download and archive any useful information for use on a rainy day in the future.
Note: Most of the information on TV and monitor CRT construction, operation, interference and other problems. has been moved to the document: "TV and Monitor CRT (Picture Tube) Information". The following is just a brief introduction with instructions on degaussing.
All color CRTs utilize a shadow mask or aperture grill a fraction of an inch (1/2" typical) behind the phosphor screen to direct the electron beams for the red, green, and blue video signals to the proper phosphor dots. Since the electron beams for the R, G, and B phosphors originate from slightly different positions (individual electron guns for each) and thus arrive at slightly different angles, only the proper phosphors are excited when the purity is properly adjusted and the necessary magnetic field free region is maintained inside the CRT. Note that purity determines that the correct video signal excites the proper color while convergence determines the geometric alignment of the 3 colors. Both are affected by magnetic fields. Bad purity results in mottled or incorrect colors. Bad convergence results in color fringing at edges of characters or graphics. The shadow mask consists of a thin steel or InVar (a ferrous alloy) with a fine array of holes - one for each trio of phosphor dots - positioned about 1/2 inch behind the surface of the phosphor screen. With most CRTs, the phosphors are arranged in triangular formations called triads with each of the color dots at the apex of the triangle. With many TVs and some monitors, they are arranged as vertical slots with the phosphors for the 3 colors next to one another. An aperture grille, used exclusively in Sony Trinitrons (and now their clones as well), replaces the shadow mask with an array of finely tensioned vertical wires. Along with other characteristics of the aperture grille approach, this permits a somewhat higher possible brightness to be achieved and is more immune to other problems like line induced moire and purity changes due to local heating causing distortion of the shadow mask. However, there are some disadvantages of the aperture grille design: * weight - a heavy support structure must be provided for the tensioned wires (like a piano frame). * price (proportional to weight). * always a cylindrical screen (this may be considered an advantage depending on your preference. * visible stabilizing wires which may be objectionable or unacceptable for certain applications. Apparently, there is no known way around the need to keep the fine wires from vibrating or changing position due to mechanical shock in high resolution tubes and thus all Trinitron monitors require 1, 2, or 3 stabilizing wires (depending on tube size) across the screen which can be see as very fine lines on bright images. Some people find these wires to be objectionable and for some critical applications, they may be unacceptable (e.g., medical diagnosis).
Degaussing may be required if there are color purity problems with the display. On rare occasions, there may be geometric distortion caused by magnetic fields as well without color problems. The CRT can get magnetized: * if the TV or monitor is moved or even just rotated. * if there has been a lightning strike nearby. A friend of mine had a lightning strike near his house which produced all of the effects of the EMP from a nuclear bomb. * If a permanent magnet was brought near the screen (e.g., kid's magnet or megawatt stereo speakers). * If some piece of electrical or electronic equipment with unshielded magnetic fields is in the vicinity of the TV or monitor. Degaussing should be the first thing attempted whenever color purity problems are detected. As noted below, first try the internal degauss circuits of the TV or monitor by power cycling a few times (on for a minute, off for 30 minutes, on for a minute, etc.) If this does not help or does not completely cure the problem, then you can try manually degaussing. Commercial CRT Degaussers are available from parts distributors like MCM Electronics and consist of a hundred or so turns of magnet wire in a 6-12 inch coil. They include a line cord and momentary switch. You flip on the switch, and bring the coil to within several inches of the screen face. Then you slowly draw the center of the coil toward one edge of the screen and trace the perimeter of the screen face. Then return to the original position of the coil being flat against the center of the screen. Next, slowly decrease the field to zero by backing straight up across the room as you hold the coil. When you are farther than 5 feet away you can release the line switch. The key word here is ** slow **. Go too fast and you will freeze the instantaneous intensity of the 50/60 Hz AC magnetic field variation into the ferrous components of the CRT and may make the problem worse. It looks really cool to do this while the CRT is powered. The kids will love the color effects. Bulk tape erasers, tape head degaussers, open frame transformers, and the "ass-end" of a weller soldering gun can be used as CRT demagnetizers but it just takes a little longer. (Be careful not to scratch the screen face with anything sharp.) It is imperative to have the CRT running when using these whimpier approaches, so that you can see where there are still impurities. Never release the power switch until you're 4 or 5 feet away from the screen or you'll have to start over. I've never known of anything being damaged by excess manual degaussing though I would recommend keeping really powerful bulk tape erasers turned degaussers a couple of inches from the CRT. If an AC degaussing coil or substitute is unavailable, I have even done degaussed with a permanent magnet but this is not recommended since it is more likely to make the problem worse than better. However, if the display is unusable as is, then using a small magnet can do no harm. (Don't use a 20 pound speaker or magnetron magnet as you may rip the shadow mask right out of the CRT - well at least distort it beyond repair. What I have in mind is something about as powerful as a refrigerator magnet.) Keep degaussing fields away from magnetic media. It is a good idea to avoid degaussing in a room with floppies or back-up tapes. When removing media from a room remember to check desk drawers and manuals for stray floppies, too. It is unlikely that you could actually affect magnetic media but better safe than sorry. Of the devices mentioned above, only a bulk eraser or strong permanent magnet are likely to have any effect - and then only when at extremely close range (direct contact with media container). All color CRTs include a built-in degaussing coil wrapped around the perimeter of the CRT face. These are activated each time the CRT is powered up cold by a 3 terminal thermister device or other control circuitry. This is why it is often suggested that color purity problems may go away "in a few days". It isn't a matter of time; it's the number of cold power ups that causes it. It takes about 15 minutes of the power being off for each cool down cycle. These built-in coils with thermal control are never as effective as external coils. See the document: " TV and Monitor CRT (Picture Tube) Information" for some additional discussion of degaussing tools, techniques, and cautions.
Proper care of a TV does not require much. Following the recommendations below will assure long life and minimize repairs: * Subdued lighting is preferred for best viewing conditions but I will not attempt to tell you how to arrange your room! * Locate the TV away from extremes of hot and cold. Avoid damp or dusty locations if possible. (Right you say, keep dreaming!) * Allow adequate ventilation - TVs use more power than any of your other A/V components. Heat buildup takes its toll on electronic components. Leave at least 3 inches on top and sides for air circulation if the entertainment center does not have a wide open back panel. Do not pile other components like VCRs on top of the TV if possible (see below). * Do not put anything on top of the TV that might block the ventilation grill in the rear or top of the cover. This is the major avenue for the convection needed to cool internal components. * If possible, locate the VCR away from the TV. Some VCRs are particularly sensitive to interference from the TV's circuitry and while this won't usually damage anything, it may make for less than optimal performance due to RF interference. The reverse is sometimes true as well. In addition, modern VCRs are NOT built like the Brooklyn Bridge! The weight of a TV or stereo components could affect the VCR mechanically, messing up tape path alignment or worse. * If possible, locate your computer monitor away from the TV. Interaction of the electromagnetic fields of the deflection systems may result in one or both displays jiggling, wiggling, or vibrating. * Locate loudspeakers and other sources of magnetic fields at least a couple of feet from the TV. This will minimize the possibility of color purity or geometry problems. * Make sure all input-output video and audio connections are tight and secure to minimize intermittent or noisy pictures and sound. Use proper high quality cable only long enough to make connections conveniently. * Finally, store video cassettes well away from all electronic equipment including and especially loudspeakers. Heat and magnetic fields will rapidly turn your priceless video collection into so much trash. The operation of the TV depends on magnetic fields for beam deflection. Enough said.
Preventive maintenance for a TV is pretty simple - just keep the case clean and free of obstructions. Clean the screen with a soft cloth just dampened with water and at most, mild detergent. DO NOT use anything so wet that liquid may seep inside of the set around the edge of the picture tube - you could end up with a very expensive repair bill when the liquid shorts out the main circuit board lurking just below. If the set has a protective flat glass faceplate, there is usually an easy way (on newer sets with this type of protection) of removing it to get at the inner face of the CRT. Clean both the CRT and the protective glass with a soft damp cloth and dry thoroughly. If you have not cleaned the screen for quite a while, you will be amazed at the amount of black grime that collects due to the static buildup from the high voltage CRT supply. In really dusty situations, periodically vacuuming inside the case and the use of contact cleaner for the controls might be a good idea but realistically, you will not do this so don't worry about it.
"I remember a while back (about 10 years) most home computers used to hook up to televisions. I seem to remember them having some effect on the TV though. I think they made the TV go blurry after a while. I was just wondering what these computers used to do to the televisions to mess them up like that. I thought a TV signal was a TV signal." The problem was screen burn. Since computers of that ear were mostly text and video games tended to use fixed patterns for scenery, patterns tended to be burned into the phosphor such that they were noticeably darker and less sensitive in those areas. This was exacerbated by the tendency to run them devices at very high brightness levels. Modern computers and video games should not be nearly as much of a risk since the displays are so much more varied and dynamic. Nevertheless, setting the brightness at a moderate level would be prudent.
TVs and computer or video monitors are among the more dangerous of consumer electronics equipment when it comes to servicing. (Microwave ovens are probably the most hazardous due to high voltage at high power.) There are two areas which have particularly nasty electrical dangers: the non-isolated line power supply and the CRT high voltage. Major parts of nearly all modern TVs and many computer monitors are directly connected to the AC line - there is no power transformer to provide the essential barrier for safety and to minimize the risk of equipment damage. In the majority of designs, the live parts of the TV or monitor are limited to the AC input and line filter, degauss circuit, bridge rectifier and main filter capacitor(s), low voltage (B+) regulator (if any), horizontal output transistor and primary side of the flyback (LOPT) transformer, and parts of the startup circuit and standby power supply. The flyback generates most of the other voltages used in the unit and provides an isolation barrier so that the signal circuits are not line connected and safer. Since a bridge rectifier is generally used in the power supply, both directions of the polarized plug result in dangerous conditions and an isolation transformer really should be used - to protect you, your test equipment, and the TV, from serious damage. Some TVs do not have any isolation barrier whatsoever - the entire chassis is live. These are particularly nasty. The high voltage to the CRT, while 200 times greater than the line input, is not nearly as dangerous for several reasons. First, it is present in a very limited area of the TV or monitor - from the output of the flyback to the CRT anode via the fat red wire and suction cup connector. If you don't need to remove the mainboard or replace the flyback or CRT, then leave it alone and it should not bite. Furthermore, while the shock from the HV can be quite painful due to the capacitance of the CRT envelope, it is not nearly as likely to be lethal since the current available from the line connected power supply is much greater.
These guidelines are to protect you from potentially deadly electrical shock hazards as well as the equipment from accidental damage. Note that the danger to you is not only in your body providing a conducting path, particularly through your heart. Any involuntary muscle contractions caused by a shock, while perhaps harmless in themselves, may cause collateral damage - there are many sharp edges inside this type of equipment as well as other electrically live parts you may contact accidentally. The purpose of this set of guidelines is not to frighten you but rather to make you aware of the appropriate precautions. Repair of TVs, monitors, microwave ovens, and other consumer and industrial equipment can be both rewarding and economical. Just be sure that it is also safe! * Don't work alone - in the event of an emergency another person's presence may be essential. * Always keep one hand in your pocket when anywhere around a powered line-connected or high voltage system. * Wear rubber bottom shoes or sneakers. * Don't wear any jewelry or other articles that could accidentally contact circuitry and conduct current, or get caught in moving parts. * Set up your work area away from possible grounds that you may accidentally contact. * Know your equipment: TVs and monitors may use parts of the metal chassis as ground return yet the chassis may be electrically live with respect to the earth ground of the AC line. Microwave ovens use the chassis as ground return for the high voltage. In addition, do not assume that the chassis is a suitable ground for your test equipment! * If circuit boards need to be removed from their mountings, put insulating material between the boards and anything they may short to. Hold them in place with string or electrical tape. Prop them up with insulation sticks - plastic or wood. * If you need to probe, solder, or otherwise touch circuits with power off, discharge (across) large power supply filter capacitors with a 2 W or greater resistor of 100 to 500 ohms/V approximate value (e.g., for a 200 V capacitor, use a 20K to 100K ohm resistor). Monitor while discharging and verify that there is no residual charge with a suitable voltmeter. In a TV or monitor, if you are removing the high voltage connection to the CRT (to replace the flyback transformer for example) first discharge the CRT contact (under the insulating cup at the end of the fat red wire). Use a 1M to 10M ohm 5 W or greater wattage (for its voltage holdoff capability, not power dissipation) resistor on the end of an insulating stick or the probe of a high voltage meter. Discharge to the metal frame which is connected to the outside of the CRT. * For TVs and monitors in particular, there is the additional danger of CRT implosion - take care not to bang the CRT envelope with your tools. An implosion will scatter shards of glass at high velocity in every direction. There are several tons of force attempting to crush the typical CRT. While implosion is not really likely even with modest abuse, why take chances? However, the CRT neck is relatively thin and fragile and breaking it would be very embarrassing and costly. Always wear eye protection when working around the back side of a CRT. * Connect/disconnect any test leads with the equipment unpowered and unplugged. Use clip leads or solder temporary wires to reach cramped locations or difficult to access locations. * If you must probe live, put electrical tape over all but the last 1/16" of the test probes to avoid the possibility of an accidental short which could cause damage to various components. Clip the reference end of the meter or scope to the appropriate ground return so that you need to only probe with one hand. * Perform as many tests as possible with power off and the equipment unplugged. For example, the semiconductors in the power supply section of a TV or monitor can be tested for short circuits with an ohmmeter. * Use an isolation transformer if there is any chance of contacting line connected circuits. A Variac(tm) is not an isolation transformer! The use of a GFCI (Ground Fault Circuit Interrupter) protected outlet is a good idea but will not protect you from shock from many points in a line connected TV or monitor, or the high voltage side of a microwave oven, for example. (Note however, that, a GFCI may nuisanse trip at power-on or at other random times due to leakage paths (like your scope probe ground) or the highly capacitive or inductive input characteristics of line powered equipment.) A fuse or circuit breaker is too slow and insensitive to provide any protection for you or in many cases, your equipment. However, these devices may save your scope probe ground wire should you accidentally connect it to a live chassis. * Don't attempt repair work when you are tired. Not only will you be more careless, but your primary diagnostic tool - deductive reasoning - will not be operating at full capacity. * Finally, never assume anything without checking it out for yourself! Don't take shortcuts!Go to [Next] segment
Go to [Table 'O Contents]